A new method for determination of potassium in soils using diffusive gradients in thin films (DGT)

Author:

Tandy Susan,Mundus Simon,Zhang Hao,Lombi Enzo,Frydenvang Jens,Holm Peter E.,Husted Søren

Abstract

Environmental contextPotassium is an essential plant nutrient and farmers need to be able to predict how much soil K is plant available in order to optimise fertiliser applications and crop production. Traditional methods such as chemical extraction are generally poor predictors. A DGT based methodology that could enhance the assessment of plant available K is developed, which will assist plant growers to determine the correct fertiliser application, thereby avoiding crop deficiencies and limiting the misuse of K as a precious natural resource. AbstractPotassium is an essential plant nutrient often limiting plant productivity. Ammonium acetate extraction is often used to predict the potassium status of soils. However, correlation between extracted K and plant uptake is often poor, especially over a range of different soil textures. Diffusive gradients in thin films (DGT), which determines the diffusive supply of elements, has been shown to accurately measure plant available elements in several cases. Up until now, however, the DGT devices available have not been suitable for measuring K. We set out to develop a DGT device suitable for the measurement of K in soil and test its ability to predict plant available K. The DGT device contained a binding layer based on Amberlite IRP-69 cation exchange resin. It proved suitable for the measurement of K under conditions similar to those usually found in soil if a 2-h deployment time was used and the labile K concentration was limited to 400 µM. Prediction of plant K concentrations with DGT were similar to those with ammonium acetate extractions over a range of typical agricultural soils with sandy and sandy loam textures. The results indicate that this new type of DGT has the potential to improve the accuracy of predictions of the K status of soils, although more tests using a wider range of plant species and soils are necessary.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3