Fibronectin type II-module proteins in the bovine genital tract and their putative role in cell volume control during sperm maturation

Author:

Sahin Evrim,Petrunkina Anna M.,Ekhlasi-Hundrieser Mahnaz,Hettel Christiane,Waberski Dagmar,Harrison Robin A. P.,Töpfer-Petersen Edda

Abstract

The male reproductive tract of ungulates contains two protein families bearing tandemly arranged fibronectin II (Fn2) modules; one (small Fn2 proteins) bears two modules (e.g. BSP–A1/2), the other (long Fn2 proteins) bears four (e.g. epididymal sperm-binding protein 1 (ELSPBP1)). While it is well known that small Fn2 proteins are present in bull semen, nothing is known about long Fn2 proteins. In the present study, the presence of ELSPBP1 proteins in the bull epididymis and their association with maturing spermatozoa were investigated using a specific antibody against canine ELSPBP1. Analysis of western blots showed ELSPBP1 to be present in the caput, corpus and cauda regions of the epididymis. The protein, which bound phosphorylcholine (PC) strongly, appeared to associate with the spermatozoa during maturation because it was absent from caput spermatozoa but present on cauda spermatozoa. Immunocytochemistry of cauda spermatozoa showed the protein to be bound to the post-acrosomal and midpiece regions. ELSPBP1 could not be detected on freshly ejaculated spermatozoa but was revealed after a capacitating treatment. Our previous studies have shown differences between bovine caput and cauda spermatozoa in terms of their ability to control cell volume. Because of the close homology of BSP–A1/2 PC binding regions with Fn2 regions in ELSPBP1, BSP–A1/2 was used as a model to investigate the effect of a PC-binding Fn2 protein on cell volume control. While the protein had no effect on cauda spermatozoa, it caused caput spermatozoa to swell more in response to hypotonic stress, similarly to untreated cauda spermatozoa.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3