Quantifying variability of soil physical properties within soil series to address modern land-use issues on the Canterbury Plains, New Zealand

Author:

Webb T. H.,Claydon J. J.,Harris S. R.

Abstract

Lack of accurate data to estimate soil physical properties for soil types is limiting the wide application of simulation models to address modern environmental and land-use issues. In this study, systematic sampling of soil profiles for soil physical characteristics has provided an improved basis upon which to estimate a number of soil physical properties for 4 soil series. The selected soils form a soil drainage sequence on the post-glacial surface of the Canterbury Plains and vary from shallow sandy loam, well-drained soils to deep clay loam, poorly drained soils. Three profiles within 3 map units were sampled for each of 4 soil series. Three horizons in each soil profile were sampled for soil porosity values, particle size, and saturated and near-saturated hydraulic conductivity. Variability in all data, as shown by coefficient of variation, increased in the order: total porosity = field capacity < wilting point < total available water = clay content < readily available water < macroporosity < sand content < hydraulic conductivity. Hydraulic conductivity exhibited high variability within horizons, between profiles, and within soil series. Temuka subsoils had extremely high variability in saturated hydraulic conductivity and this could be explained by their coarse prismatic structure. Analysis of variance identified horizons that differed in soil physical properties between soil series. Horizons that do not differ between series may be given pooled soil property values for the pooled series. Total porosity, field capacity, wilting point, clay content, and near-saturated hydraulic conductivity had the greatest number of differences (60–70%) between series comparisons, while total available water had fewest differences (5%). The series with greatest differences in drainage class (Temuka compared with Eyre or Templeton soils) recorded the largest number of differences in water release characteristics and particle size. There were few differences between well-drained Eyre and moderately well-drained Templeton series. Subsoils of Eyre series differed in hydraulic conductivity from subsoils for the other 3 series, but few differences in hydraulic conductivity were found between horizons of Templeton, Wakanui, and Temuka series. Hydraulic conductivity estimates for these series can therefore be pooled.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3