Pixel and object-based classification approaches for mapping forest fuel types in Tenerife Island from ASTER data

Author:

Alonso-Benito Alfonso,Arroyo Lara A.,Arbelo Manuel,Hernández-Leal Pedro,González-Calvo Alejandro

Abstract

Four classification algorithms have been assessed and compared with mapped forest fuel types from Terra-ASTER sensor images in a representative area of Tenerife Island (Canary Islands, Spain). A BEHAVE fuel-type map from 2002, together with field data also obtained in 2002 during the Third Spanish National Forest Inventory, was used as reference data. The BEHAVE fuel types of the reference dataset were first converted into the Fire Behaviour Fuel Types described by Scott and Burgan, taking into account the vegetation of the study area. Then, three pixel-based algorithms (Maximum Likelihood, Neural Network and Support Vector Machine) and an Object-Based Image Analysis were applied to classify the Scott and Burgan fire behaviour fuel types from an ASTER image from 3 March 2003. The performance of the algorithms tested was assessed and compared in terms of quantity disagreement and allocation disagreement. Within the pixel-based classifications, the best results were obtained from the Support Vector Machine algorithm, which showed an overall accuracy of 83%; 14% of disagreement was due to allocation and 3% to quantity disagreement. The Object-Based Image Analysis approach produced the most accurate maps, with an overall accuracy of 95%; 4% disagreement was due to allocation and 1% to quantity disagreement. The object-based classification achieved thus an overall accuracy of 12% above the best results obtained for the pixel-based algorithms tested. The incorporation of context information to the object-based classification allowed better identification of fuel types with similar spectral behaviour.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3