The role of decomposer communities in managing surface fuels: a neglected ecosystem service

Author:

Gibb H.,Grubb J. J.,Decker O.ORCID,Murphy N.ORCID,Franks A. E.,Wood J. L.

Abstract

Surface fuel loads are a key driver of forest fires and the target of hazard reduction burns to reduce fire risk. However, the role of biota in decomposition, or feedbacks between fire and decomposer communities are rarely considered. We review the evidence that decomposer organisms play an important role in surface fuel regulation and how this role is affected by fire. First, we outline the contribution of decomposer organisms to the breakdown of surface fuels. Next, we consider the three distinct phases through which fire regulates decomposer communities and how this may affect decomposition and future fire regimes. Finally, we consider interactions between global change and decomposer–fire feedbacks and the implications for fire management. Evidence indicates that decomposer organisms are important in regulating surface fuels and we propose that the biological basis and dynamic nature of fuel load control require greater attention. This includes better understanding of functional redundancy among decomposer organisms, the impacts of global change on the biota that drive decomposition and the factors that limit decomposer persistence and recolonisation following fires. By filling these knowledge gaps, we will be better armed to conserve and manage these functionally critical taxa in fire-prone ecosystems in a changing world.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3