Identification of stay-green and early senescence phenotypes in high-yielding winter wheat, and their relationship to grain yield and grain protein concentration using high-throughput phenotyping techniques

Author:

Kipp Sebastian,Mistele Bodo,Schmidhalter Urs

Abstract

Yield and grain protein concentration (GPC) represent crucial factors in the global agricultural wheat (Triticum aestivum L.) production and are predominantly determined via carbon and nitrogen metabolism, respectively. The maintenance of green leaf area and the onset of senescence (Osen) are expected to be involved in both C and N accumulation and their translocation into grains. The aim of this study was to identify stay-green and early senescence phenotypes in a field experiment of 50 certified winter wheat cultivars and to investigate the relationships among Osen, yield and GPC. Colour measurements on flag leaves were conducted to determine Osen for 20 cultivars and partial least square regression models were used to calculate Osen for the remaining 30 cultivars based on passive spectral reflectance measurements as a high-throughput phenotyping technique for all varieties. Using this method, stay-green and early senescence phenotypes could be clearly differentiated. A significant negative relationship between Osen and grain yield (r2 = 0.81) was observed. By contrast, GPC showed a significant positive relationship to Osen (r2 = 0.48). In conclusion, the high-throughput character of our proposed phenotyping method should help improve the detection of such traits in large field trials as well as help us reach a better understanding of the consequences of the timing of senescence on yield.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3