Arabidopsis plasma membrane intrinsic protein (AtPIP2;1) is implicated in a salinity conditional influence on seed germination

Author:

Hoai Phan Thi ThanhORCID,Qiu Jiaen,Groszmann MichaelORCID,De Rosa AnnamariaORCID,Tyerman Stephen D.ORCID,Byrt Caitlin S.ORCID

Abstract

Dynamic changes in aquaporin gene expression occur during seed germination. One example is the ~30-fold increase in Arabidopsis thaliana PIP2;1 transcripts within 24 h of seed imbibition. To investigate whether AtPIP2;1 can influence seed germination wild-type Columbia-0, single (Atpip2;1) and double (Atpip2;1-Atpip2;2) loss-of-function mutants, along with transgenic 2x35S::AtPIP2;1 over-expressing (OE) lines and null-segregant controls, were examined. The various genotypes were germinated in control and saline (75 mM NaCl treatment) conditions and tested for germination efficiency, imbibed seed maximum cross sectional (MCS) area, imbibed seed mass, and seed Na+ and K+ content. Seed lacking functional AtPIP2;1 and/or AtPIP2;2 proteins or constitutively over-expressing AtPIP2;1, had delayed germination in saline conditions relative to wild-type and null-segregant seed, respectively. Exposure to saline germination conditions resulted in Atpip2;1 mutants having greater imbibed seed mass and less accumulated Na+ than wild-type, whereas lines over-expressing AtPIP2;1 had reduced imbibed seed mass and greater seed K+ content than null-segregant control seed. The results imply a role for AtPIP2;1 in seed germination processes, whether directly through its capacity for water and ion transport or H2O2 signalling, or indirectly through potentially triggering dynamic differential regulation of other aquaporins expressed during germination. Future research will aid in dissecting the aquaporin functions influencing germination and may lead to novel solutions for optimising germination in sub-optimal conditions, such as saline soils.

Funder

Australian Research Council

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3