Changes in photosynthetic pigment composition and absorbed energy allocation during salt stress and CAM induction in Mesembryanthemum crystallinum

Author:

Barker David H.,Marszalek Jeff,Zimpfer Jeff F.,Adams III William W.

Abstract

Mesembryanthemum crystallinum L. undergoes a transition from the C3 photosynthetic pathway to crassulacean acid metabolism (CAM) in response to increasing salinity. As a consequence, growth is greatly reduced and less light energy is utilised in carbon fixation, leading to an increase in dissipation of thermal energy to remove potentially dangerous excess excitation energy. The pigment composition of plants grown for 4 weeks at 20 mm (low) and 400 mm (high) NaCl was sampled, and photochemical performance, tissue acidity and growth were sampled at 2 and 4 weeks. High-salt-grown plants, which switched to CAM, accumulated only 25% of the fresh weight of low-salt-grown plants, which maintained C3 photosynthesis. Predawn Fv / Fm and de-epoxidation of violaxanthin [(A + Z) / (V + A + Z)] was similar between plants after 2 and 4 weeks, revealing no sustained depression in PSII efficiency under the high-salt treatment. However, at midday under high photosynthetic photon flux densities (PPFD) high-salt plants displayed lower PSII efficiency, higher (A + Z) / (V + A + Z) and greater allocation of energy to thermal dissipation over photochemistry than low-salt plants. Pigment contents were similar between treatments for the first 3 weeks, but after 4 weeks high-salt plants had accumulated significantly less chlorophyll and lutein than low-salt plants. However, V + A + Z content did not differ. High-salt treatment, leading to CAM photosynthesis and substantial reduction in growth, was associated with increased allocation of energy to xanthophyll cycle-dependent energy dissipation at high light and adjustment of thylakoid pigment composition.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3