Rice–wheat cropping systems in South Asia: issues, options and opportunities

Author:

Nawaz Ahmad,Farooq MuhammadORCID,Nadeem Faisal,Siddique Kadambot H. M.,Lal Rattan

Abstract

The rice (Oryza sativa L.)–wheat (Triticum aestivum L.) cropping system is the largest agricultural production system worldwide, and is practised on 24 Mha in Asia. Many factors have threatened the long-term sustainability of conventional rice–wheat cropping systems, including degradation of soil health, water scarcity, labour/energy crises, nutrient imbalances, low soil organic matter contents, complex weed and insect flora, the emergence of herbicide-resistant weeds, and greenhouse-gas emissions. Options for improving the yield and sustainability of the rice–wheat cropping system include the use of resource-conservation technologies such as no-till wheat, laser-assisted land levelling, and direct-seeded aerobic rice. However, these technologies are site- and situation-specific; for example, direct-seeded aerobic rice is successful on heavy-textured soils but not sandy soils. Other useful strategies include seed priming, carbon trading and payment, the inclusion of legumes, and eco-friendly and biological methods of weed control. Irrigation based on soil matric potential using tensiometers can be useful for saving surplus water in direct-seeded, aerobic rice. These options and strategies will contribute to resolving water scarcity, saving labour and energy resources, reducing greenhouse-gas emissions, increasing soil organic matter contents, and improving the soil-quality index. Seed priming with various substances that supplement osmotic pressure (osmotica) is a viable option for addressing poor stand establishment in conservation rice–wheat cropping systems and for increasing crop yields. To strengthen the campaign for using resource-conservation technologies in rice–wheat cropping systems, carbon-payment schemes could be introduced and machinery should be offered at affordable prices. The persistent issue of burning crop residues could be resolved by incorporating these residues into biogas/ethanol and biochar production. Because rice and wheat are staple foods in South Asia, agronomic biofortification is a useful option for enhancing micronutrient contents in grains to help to reduce malnutrition.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3