Carbon dynamics from carbonate dissolution in Australian agricultural soils

Author:

Ahmad Waqar,Singh Balwant,Dalal Ram C.,Dijkstra Feike A.

Abstract

Land-use and management practices on limed acidic and carbonate-bearing soils can fundamentally alter carbon (C) dynamics, creating an important feedback to atmospheric carbon dioxide (CO2) concentrations. Transformation of carbonates in such soils and its implication for C sequestration with climate change are largely unknown and there is much speculation about inorganic C sequestration via bicarbonates. Soil carbonate equilibrium is complicated, and all reactants and reaction products need to be accounted for fully to assess whether specific processes lead to a net removal of atmospheric CO2. Data are scarce on the estimates of CaCO3 stocks and the effect of land-use management practices on these stocks, and there is a lack of understanding on the fate of CO2 released from carbonates. We estimated carbonate stocks from four major soil types in Australia (Calcarosols, Vertosols, Kandosols and Chromosols). In >200-mm rainfall zone, which is important for Australian agriculture, the CaCO3-C stocks ranged from 60.7 to 2542 Mt at 0–0.3 m depth (dissolution zone), and from 260 to 15 660 Mt at 0–1.0 m depth. The combined CaCO3-C stocks in Vertosols, Kandosols and Chromosols were about 30% of those in Calcarosols. Total average CaCO3-C stocks in the dissolution zone represented 11–23% of the stocks present at 0–1.0 m depth, across the four soil types. These estimates provide a realistic picture of the current variation of CaCO3-C stocks in Australia while offering a baseline to estimate potential CO2 emission–sequestration through land-use changes for these soil types. In addition, we provide an overview of the uncertainties in accounting for CO2 emission from soil carbonate dissolution and major inorganic C transformations in soils as affected by land-use change and management practices, including liming of acidic soils and its secondary effects on the mobility of dissolved organic C. We also consider impacts of liming on mineralisation of the native soil C, and when these transformations should be considered a net atmospheric CO2 source or sink.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3