Seventy-five years of vegetation change after fire in Tasmanian alpine heathland

Author:

Sorensen Ellen-Rose,Kirkpatrick Jamie B.ORCID

Abstract

Context Alpine ecosystems are threatened by warming and an associated increase in fire frequency. There is a gap in our knowledge of succession in Tasmanian alpine heath more than 50 years after fire. The literature suggests that the alpine successional progression usually involves decreasing rates of change, decreasing differences among fire ages, ongoing transitions among shrub species, ongoing transitions from some lifeforms/species to others, and that warming results in increases in species richness. Aims We test for these tendencies up to 75 years from fire in alpine vegetation on kunanyi/Mount Wellington, Tasmania, Australia. Methods We documented the changes in vegetation structure and composition between 1998 and 2022 in plots on either side of an alpine fire boundary in the alpine heathland and used earlier data and observations to extend the record of change after fire to 75 years. We put these changes in the context of the only area of alpine vegetation that was not burnt in 1947 or later. Key results The area last burnt in 1947 exhibited declines in all lifeform covers between 1998 and 2022. All lifeforms except tall shrubs and mat shrubs declined in cover in the area last burnt in 1962. By 2022, shrub cover in the 1962-burnt area had not attained equivalence with the area last burnt in 1947. Herbs had the most dramatic decline in both fire-age classes. There were few shrub seedlings in 2022. All but six taxa, three being exotic, were observed in both the plots and previous broader surveys. Increases in species richness caused by the upward migration of lower-elevation species were not observed. The long-unburnt patch lacked the major dominant of the 1947-burnt plots, namely Orites acicularis, and was dominated by a gymnosperm absent from most of the mountain. Conclusions Succession follows the initial floristic composition model. The differences in trajectories from the 1947 and 1962 fires could possibly be due to desiccation or abrasion damage from increasing wind speeds and temperatures. There are strong indications of further potential change in the absence of fire. Implications The slow rate of recovery and its on-going nature emphasise the importance of keeping fire out of this vegetation type.

Funder

The Premier of Tasmania’s Honours Scholarship

Publisher

CSIRO Publishing

Reference74 articles.

1. Initial floristics in lodgepole pine () forests following the 1988 Yellowstone fires.;International Journal of Wildland Fire,1991

2. Alpine plants are on the move: quantifying distribution shifts of Australian alpine plants through time.;Diversity and Distributions,2022

3. Why do we need permanent plots in the study of long-term vegetation dynamics?;Journal of Vegetation Science,1996

4. Recovery in alpine heath and grassland following burning and grazing, eastern Central Plateau, Tasmania, Australia.;Arctic, Antarctic, and Alpine Research,2001

5. Bureau of Meteorology (2022) Monthly rainfall, kunanyi (Mount Wellington Pinnacle). Available at [accessed 17 October 2022]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3