Author:
Lane Michelle,Gardner David K.
Abstract
An inability to regulate ionic and metabolic homeostasis is related to a reduction in the developmental capacity of the embryo. The early embryo soon after fertilisation and up until compaction appears to have a reduced capacity to regulate its homeostasis. The reduced ability to regulate homeostasis, such as intracellular pH and calcium levels, by the precompaction-stage embryo appears to impact on the ability to regulate mitochondrial function and maintain adequate levels of energy production. This reduction in ATP production causes a cascade of events leading to disrupted cellular function and, perhaps ultimately, disrupted epigenetic regulation and aberrant placental and fetal development. In contrast, after compaction the embryo takes on a more somatic cell-like physiology and is better able to regulate its physiology and therefore appears less vulnerable to stress. Therefore, for human IVF it would seem important for the establishment of healthy pregnancies that the embryos are maintained in systems that are designed to minimise homeostatic stress, particularly for the cleavage-stage embryos, as exposure to stress is likely to culminate in impaired embryo function.
Subject
Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology
Cited by
133 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献