Molecular fractionation of dissolved organic matter on ferrihydrite: effects of dissolved cations

Author:

Liu Minqin,Ding Yang,Peng Shimeng,Lu Yang,Dang Zhi,Shi ZhenqingORCID

Abstract

Environmental contextCarbon sequestration and dynamics are influenced by adsorptive fractionation of dissolved organic matter (DOM) on minerals. We found that the molecular fractionation of DOM on ferrihydrite was highly dependent on the presence of Na, Ca and Cu ions in water. These results advance our mechanistic understanding of the dynamic behaviour of DOM, and contribute to predicting carbon cycling and contaminant behaviour in the natural environment. AbstractThe adsorptive fractionation of dissolved organic matter (DOM) at the ferrihydrite and water interface is a key geochemical process controlling DOM compositions and reactivity, thus affecting carbon cycling and contaminant behaviour in the environment. However, the effects of cations on DOM fractionation and the underlying mechanisms are poorly understood. In this study, Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) combined with spectroscopic methods were employed to investigate molecular fractionation of DOM on ferrihydrite under different cations in the background electrolytes, including Na, Ca, and Cu ions. The results indicated that DOM fractionation was influenced by the combined effects of cation type, intrinsic molecular property, and extent of DOM adsorption. DOM adsorption on ferrihydrite exhibited the strongest and the weakest fractionation under Na and Ca background electrolytes, respectively. Both Ca and Cu background electrolytes reduced the adsorption of highly unsaturated and phenolic/polyphenolic molecules with high molecular weight and number of O atoms. In addition to the molecular acidity, the complexation of Ca and Cu ions to DOM binding sites and the coagulation effect of divalent cations may affect molecular fractionation. Additionally, DOM fractionation was enhanced with increasing DOM adsorption. Our results contribute to predicting carbon cycling and contaminant behaviour in the natural environment.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3