Characterization and analysis of soils using mid-infrared partial least-squares .1. Correlations with XRF-determined major-element composition

Author:

Janik LJ,Skjemstad JO,Raven MD

Abstract

Chemical analysis is an important but often expensive and time-consuming step in the characterization of soils. Methods used for soil analysis ideally need to be rapid, accurate and relatively simple and infrared partial least squares (PLS) analysis is potentially one such method. Mid-infrared diffuse reflectance Fourier transform (DRIFT) spectra of powdered soils present the major mineralogical and organic components within each soil, relative to their concentrations. The theory indicates that experimentally derived soil properties may be correlated with the infrared spectra of some of these components, and the covariance between soil properties and spectra can then be modelled by PLS loadings and scores. Factors and scores can be derived independently for each Soil property using PLS-1, an extension of the more general PLS-2 method. This study evaluates the use of PLS-1 for the qualitative and quantitative study of soils, and in particular to classify the soil spectra and their associated major element chemistry by their PLS loadings and Scores. A subset of 100 soils, selected from a complete set of 298 samples from throughout eastern and southern Australia, was analysed by X-ray fluorescence (XRF) for major oxides as a calibration or training set to model the PLS loadings, scores and linear regression coefficients. Linear regressions resulted with R(2) values of 0 . 973-0 . 917 for XRF versus PLS predicted values for SiO2, Al2O3 and Fe2O3. Regressions for the other oxides, e.g. TiO2, MgO and CaO, were generally curved with a linear calibration giving severe underestimations at high concentrations. The PLS loadings and regression coefficients were then used to model the complete soil set to produce scores and concentration predictions for all the samples. The samples were plotted in bivariate score maps to give a visual representation of the spectral variability within the entire soil set. Samples were selected from the boundaries of the groups of soils in these maps for mineralogical characterization using X-ray diffraction (XRD) analysis. The XRD results confirmed the mineralogy obtained from the infrared spectra and PLS weight loadings. For this study, the depiction of the samples in the score maps was found to be of particular importance for demonstrating similarities in composition of the samples.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3