Influence of waterlogging on yield of wheat (Triticum aestivum), redox potentials, and concentrations of microelements in different soils in India and Australia

Author:

Yaduvanshi N. P. S.,Setter T. L.,Sharma S. K.,Singh K. N.,Kulshreshtha N.

Abstract

Effects of waterlogging relative to drained conditions on grain yield were studied in relation to soil redox potentials and microelements (Fe and Mn) in soils from India and Western Australia, using waterlogging intolerant and tolerant varieties of wheat (Triticum aestivum L.) The grain yield of wheat decreased significantly with increasing duration of waterlogging in sodic soils. In Indian soils, soil redox potentials decreased sharply after waterlogging and were 150 and 210 mV at 10 days after waterlogging in alkali soil at pH 8.5 and pH 9.2, respectively. Two Australian soils were similarly reduced in redox potential with values of ~200 mV at 10 days after waterlogging, and redox potentials were further reduced to 100 mV and –50 mV for soils without and with added glucose, respectively, after 40 days of waterlogging. The Indian soils tended to be 2–10 times higher in DTPA-Mn than the Australian soils, whereas the Australian soils were up to 10 times higher in DTPA-Fe than the Indian soils. These increases were up to 10 and 60 times higher, respectively, than reported critical concentrations for wheat. After 21 days of waterlogging, the Indian soils were drained, and the re-aeration resulted in an increase in redox potential and a decrease in DTPA-Fe and -Mn in soil solutions, but this occurred slowly, taking 15–25 days. The results support the hypothesis that waterlogging tolerance is a product of tolerance to anoxia and microelement toxicities, and that these are both key factors limiting plant growth during and after waterlogging. These factors may also contribute to the large differences in screening wheat varieties for waterlogging tolerance in different soils.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3