Prediction of three key hydraulic properties in a soil survey of a small forested catchment

Author:

O'Connell D. A.,Ryan P. J.

Abstract

Direct measurement of ψ(θ) and K(θ) relationships at all observation sites in soil survey is not feasible. Three key hydraulic properties — water content at field capacity (θ–5 kPa), water content at wilting point (θ–1.5 MPa), and saturated hydraulic conductivity (Ks) — can be used to derive K(θ) and ψ(θ) when combined with bulk density. These properties were measured in 'calibration' horizons in a soil survey in Yambulla State Forest in south-east New South Wales. Pedotransfer functions (PTFs) for predicting θ-5 kPa, θ–1.5 MPa, and Ks from the physical and morphologic soil attributes are presented and evaluated here. Models for predicting θ–5 kPa and θ–1.5 MPa relied on per cent clay. An R2 of 0.64 (for θ–5 kPa) to 0.67 (for θ–1.5 MPa) was obtained for linear regressions using only morphologic explanatory variables. An R2 of 0.73 (for θ–5 kPa) to 0.90 (for θ–1.5 MPa) was obtained if laboratory-measured clay content was included as an explanatory variable. Ks was measured in situ using well permeameters, and used for developing PTFs. Large cores were taken from a small subsample of horizons and measurements of Ks, K–0.1 kPa, K–0.2 kPa, and K–0.5 kPa were made in the laboratory. Ks measurements from well permeameters were similar to K-0.5 kPa from laboratory measurements. Regression and tree models were used to predict Ks. The linear regression had an R2 of 0.55, while the tree models accounted for approximately 40% reduction in deviance. Bulk density was the most useful predictor in all Ks models. The inclusion of per cent rock fragments, bulk density, and estimated percentage clay as useful explanatory variables demonstrated the utility of functional descriptors not routinely measured in soil survey. The models are empirical and were locally calibrated for use in a soil survey. They may be applicable in target domains similar to the source domain (i.e. coarse-grained adamellite soils in similar climatic regimes). surrogates, saturated hydraulic conductivity, K(θ), ψ(θ), Ks, pedotransfer functions, soil survey, soil morphology, PTF.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3