The reproductive biology of the introduced root holoparasite Orobanche ramosa subsp. mutelii (Orobanchaceae) in South Australia

Author:

Prider Jane

Abstract

An understanding of the timing and constraints on seed production is necessary for the successful control of many invasive plant species. In the present study, we investigated the reproductive traits of the annual root holoparasite, Orobanche ramosa L. subsp. mutelii (F.W.Shultz) Cout. (branched broomrape), which occurs in the western Murray mallee area of South Australia. Flowering stems emerge above the ground from early September. Each flower spike has from 2 to 24 flowers and the first flower opens on the base 8 days after emergence and senesces 6 days later. An additional flower opens acropetally every 1–2 days. The species is autogamous and self-pollination can occur before anthesis. Mature seeds were observed from 9–10 days after flower senescence and capsules dehisced 12 days later. Although each plant is in flower only for an average of 20 days, in large populations or multi-branched plants, the flowering period extends over several weeks, with a peak in mid-October. Seed production in sampled populations was highly variable, ranging from 1000 to over 200 000 per plant. Large plants with several branching stems produced the most seeds, although capsules produced per stem and seeds per capsule were also variable. There is a brief window of opportunity for control of O. ramosa subsp. mutelii after it emerges above the soil surface and before it sets seed. Weedy root parasites such as Orobanche ramosa can have devastating impacts on host crops, but are difficult to control because most growth occurs underground. We identified key characters that contribute to the success of this introduced plant, including self-pollination, rapid maturation of the reproductive stages and high seed output. Vigilance is required so that plants can be controlled before they set seed.

Publisher

CSIRO Publishing

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3