Effect of moisture content and fuel type on emissions from vegetation using a steady state combustion apparatus

Author:

Garg Priya,Roche Thomas,Eden Matthew,Matz Jacqueline,Oakes Jessica M.,Bellini Chiara,Gollner Michael J.ORCID

Abstract

Emission measurements are available in the literature for a wide variety of field burns and laboratory experiments, although previous studies do not always isolate the effect of individual features such as fuel moisture content (FMC). This study explores the effect of FMC on gaseous and particulate emissions from flaming and smouldering combustion of four different wildland fuels found across the United States. A custom linear tube-heater apparatus was built to steadily produce emissions in different combustion modes over a wide range of FMC. Results showed that when compared with flaming combustion, smouldering combustion showed increased emissions of CO, particulate matter and unburned hydrocarbons, corroborating trends in the literature. CO and particulate matter emissions in the flaming mode were also significantly correlated with FMC, which had little influence on emissions for smouldering mode combustion, when taking into account the dry mass of fuel burned. These variations occurred for some vegetative fuel species but not others, indicating that the type of fuel plays an important role. This may be due to the chemical makeup of moist and recently live fuels, which is discussed and compared with previous measurements in the literature.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3