The role of active fractions of soil organic matter in physical and chemical fertility of Ferrosols

Author:

Bell M. J.,Moody P. W.,Connolly R. D.,Bridge B. J.

Abstract

The relationships between fractions of soil organic carbon (C) oxidised by varying strengths of potassium permanganate (KMnO4) and important soil physical and chemical properties were investigated for Queensland Ferrosols. These soils spanned a wide range of clay contents (31-83%), pH values (4·4-7·9; 1 : 5 water), and total C contents (12· 1-111 g/kg). Carbon fractions were derived by oxidation with 33 mM (C1), 167 mM (C2), and 333 mM (C3) KMnO4, while organic C and total C were determined by Heanes wet oxidation and combustion, respectively. Aggregate stability was determined by wet sieving soil from the surface crust after 30 min of high intensity (100 mm/h), simulated rainfall on disturbed samples in the laboratory. The proportion of aggregates <0·125 mm (P125) was used as the stability indicator because of the high correlation between this size class and the final rainfall infiltration rate (r2 = 0qa86, n = 42). The soil organic C fraction most closely correlated with P125 was C1 (r2 = 0·79, n = 42). This fraction was also highly correlated with final, steady-state infiltration rates in field situations where there were no subsurface constraints to infiltration (r2 = 0·74, n = 30). Multiple linear regression techniques were used to identify the soil properties determining effective cation exchange capacity (ECEC, n = 89). Most variation in ECEC (R2 = 0 ·72) was accounted for by a combination of C1 (P < 0·0001) and pH (P < 0·0001). These results confirm the very important role played by the most labile (easily oxidised) fraction of soil organic matter (C1) in key components of the chemical and physical fertility of Ferrosols. Management practices which maintain adequate C1 concentrations are essential for sustainable cropping on these soils.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3