A review of nitrogen losses due to leaching and surface runoff under intensive pasture management in Australia

Author:

Burkitt Lucy L.

Abstract

This paper reviews the literature on nitrate leaching and nitrogen (N) runoff under intensive dairy pasture systems in Australia and draws comparisons with research undertaken under similar climates and farming systems internationally, with the aim to inform future research in this area. An Australian nitrate-leaching study suggests that annual nitrate-leaching loads are lower (3.7–14.5 kg N ha–1 year–1 for nil N and 6–22 kg N ha–1 year–1 for 200 kg N ha–1 applied) than the range previously measured and modelled on New Zealand dairy farms (~18–110 kg N ha–1 year–1). It is likely that nitrate-leaching rates are higher in New Zealand because of the prevalence of free-draining soils and higher average stocking rates. However, this review highlights that there are insufficient Australian nitrate-leaching data, particularly following urine application, to undertake a rigorous comparison. Median N surpluses on Australian dairy farms are higher (198 kg N ha–1) than values for an average New Zealand farm (135 kg N ha–1). Given the facts that many soils used for intensive pasture production in Australia are lightly textured or free-draining clay loams receiving average rainfall of >800 mm year–1, that herd sizes have risen in the last 10 years and that water quality is a concern in some dairy catchments, nitrate leaching could be an issue for the Australian dairy industry. Australian data on surface runoff of N are more available, despite its overall contribution to N losses being low (generally <5 kg N ha–1 year–1), except under border-check flood irrigation or hump-and-hollow surface drainage (3–23 kg N ha–1 year–1). More research is needed to quantify surface N runoff and leaching following effluent application and to examine dissolved organic forms of N loss, particularly in view of the continued intensification of the Australian dairy industry.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3