Author:
Yousaf Muhammad Rizwan,Chohan Kazim Raza
Abstract
The nuclear morphology, diameter and in vitro meiotic competence of buffalo oocytes was compared relative to follicle size. Cumulus–oocyte complexes (COCs) were collected from 1–<2, 2–<3, 3–<4, 4–<6 and 6–<8 mm follicles from abattoir ovaries. Cumulus cells were removed using 3 mg mL−1 hyaluronidase in saline and repeated pipetting. Denuded oocytes were measured, fixed in 3% glutaraldehyde, stained with 4,6-diamidoino-2-phenylindole and evaluated for nuclear morphology, namely the stage of germinal vesicle (GV) development before in vitro maturation (IVM). The COCs from >2-mm follicles were matured in vitro in their respective size groups for 24 h in Medium 199 supplemented with 10 μg mL−1 follicle-stimulating hormone, 10 μg mL−1 luteinizing hormone, 1.5 μg mL−1 oestradiol, 75 μg mL−1 streptomycin, 100 IU mL−1 penicillin, 10 mM HEPES and 10% fetal bovine serum. Matured oocytes were fixed, stained and evaluated for GV status and meiotic development. The number of oocytes collected from follicles 1–<8 mm in diameter averaged 1.82 per ovary. Oocytes from follicles 1–<2 mm (107.7 ± 1.6 μm), 2–<3 mm (108 ± 1.1 μm) and 3–<4 mm (114.6 ± 1.3 μm) in diameter were smaller in diameter (P < 0.05) than oocytes from follicles 4–<6 mm (124.4 ± 1.3 μm) and 6–<8 mm (131.9 ± 1.4 μm) in diameter. A majority of oocytes (P < 0.05) from <4-mm follicles was at the initial stages of GV development (GV-I, II and III), whereas oocytes from 4–<6- and 6–<8-mm follicles were at the final stages of GV-IV (35.0 and 21.6% respectively) and GV-V (49.1 and 67.5% respectively). Poor IVM rates of 32.0% and 32.7% to metaphase (M)-II were observed for oocytes isolated from 2–<3- and 3–<4-mm follicles, respectively, whereas significantly (P < 0.05) more oocytes from 4–<6- and 6–<8-mm follicles reached M-II (67.1% and 79.1% respectively). In conclusion, buffalo oocytes displayed a size-dependent ability to undergo meiotic maturation and we suggest that oocytes from >4-mm follicles should be considered in buffalo in vitro fertilization systems for better results.
Subject
Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology