Abstract
Drought and heat stress significantly affect crop growth and productivity worldwide. It is unknown how heat interference during drought affects physiological processes dynamically in crops. Here we focussed on gas exchange and photochemistry in wheat and sorghum in response to simulated heat interference via +15°C of temperature during ~2 week drought and re-watering. Results showed that drought decreased net photosynthesis (Anet), stomatal conductance (gs), maximum velocity of ribulose-1, 5-bisphosphate carboxylase/oxygenase carboxylation (Vcmax) and electron transport rate (J) in both wheat and sorghum. Heat interference did not further reduce Anet or gs. Drought increased non-photochemical quenching (Φnpq), whereas heat interference decreased Φnpq. The δ13C of leaf, stem and roots was higher in drought-treated wheat but lower in drought-treated sorghum. The results suggest that (1) even under drought conditions wheat and sorghum increased or maintained gs for transpirational cooling to alleviate negative effects by heat interference; (2) non-photochemical quenching responded differently to drought and heat stress; (3) wheat and sorghum responded in opposing patterns in δ13C. These findings point to the importance of stomatal regulation under heat crossed with drought stress and could provide useful information on development of better strategies to secure crop production for future climate change.
Subject
Plant Science,Agronomy and Crop Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献