Evaluation and modelling of furrow infiltration for uncropped ridge - furrow tillage in Loess Plateau soils

Author:

Zhang Yongyong,Wu Pute,Zhao Xining,Li Ping

Abstract

The soil water dynamic process is critical for the design, management, and evaluation of ridge–furrow tillage in the semi-arid region of the Loess Plateau. The aim of this study was to determine the effectual infiltration variables, to evaluate the performance of four classical infiltration models, and to investigate the effect of those variables on the infiltration characteristics in a ridge–furrow configuration. Sixteen experimental treatments with two replications were conducted to monitor furrow infiltration in four types of Loess Plateau soils. The path analysis method was applied to quantify the effects of variables—opportunity time (T), initial soil water content (Q), bulk density (P), flow section area (S), and wetted perimeter (Wp) as independent variables—on cumulative infiltration (I). The results revealed that the direct effects of variables Wp, P, T, Q, and S on I were 0.751, –0.649, 0.291, –0.251, and –0.123, respectively. Variables Wp and P were the effectual components of furrow infiltration. The direct effect and total effect of Q on I were relatively minor compared with the other variables. The performance of four infiltration models (Philip model, Kostiakov–Lewis model, Kostiakov model, and Horton model) was investigated on the basis of evaluation indices. The Kostiakov–Lewis infiltration model with three parameters provided the best description of the relationship between cumulative infiltration and time. The influence of Wp on the constant coefficient k of the Kostiakov–Lewis model was significant. A furrow infiltration model taking Wp into consideration was developed. Validations in different Wp of two other soil types indicated that the soil water infiltration characteristics could be effectively simulated by the effectual variable based model for an uncropped ridge–furrow system. The information obtained from this research is useful in designing irrigation schemes and field management for ridge–furrow tillage.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3