Oxidative stress and male reproductive biology

Author:

Aitken R. John,Baker Mark A.

Abstract

Spermatozoa were the first cell type in which the cellular generation of reactive oxygen was demonstrated. This activity has now been confirmed in spermatozoa from all mammalian species examined including the rat, mouse, rabbit, horse, bull and human being. Under physiological circumstances, cellular redox activity is thought to drive the cAMP-mediated, tyrosine phosphorylation events associated with sperm capacitation. In addition to this biological role, human spermatozoa also appear to suffer from oxidative stress, with impacts on the normality of their function and the integrity of their nuclear and mitochondrial DNA. Recent studies have helped to clarify the molecular basis for the intense redox activity observed in defective human spermatozoa, the nature of the subcellular structures responsible for this activity and possible mechanisms by which oxidative stress impacts on these cells. Given the importance of oxidative damage in the male germ line to the origins of male infertility, early pregnancy loss and childhood disease, this area of sperm biochemistry deserves attention from all those interested in improved methods for the diagnosis, management and prevention of male-mediated reproductive failure.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3