Betamethasone, progesterone and RU-486 (mifepristone) exert similar effects on connexin expression in trophoblast-derived HTR-8/SVneo cells

Author:

Cervellati F.,Pavan B.,Lunghi L.,Manni E.,Fabbri E.,Mascoli C.,Biondi C.,Patella A.,Vesce F.

Abstract

Connexins (Cx) are membrane proteins able to influence cell trophoblast responses, such as proliferation, differentiation, migration and invasiveness. Likewise, glucocorticoids are also known to modulate many factors involved in implantation, including trophoblast gap-junction intercellular communication, although their influence on pregnancy is controversial. In order to investigate the effects of betamethasone, a synthetic glucocorticoid, on Cx and glucocorticoid receptor (GR) expression and localisation, as well as on cell proliferation, the extravillous trophoblast-derived HTR-8/SVneo cell line was used as a model. The results, confirmed by means of immunofluorescence, demonstrate that betamethasone selectively modifies GR and Cx expression, enhancing the GRα isoform without affecting GRβ, and inhibiting Cx40 expression whilst increasing that of Cx43 and Cx45. Furthermore, betamethasone was shown to exert an inhibitory action on cell proliferation. In this model the abortion drug RU-486 (mifepristone), reported to be a GR antagonist, did not counteract this effect of betamethasone. On the contrary, it induced responses similar to those of the hormone. Knowing that RU-486 is also a potent progesterone-receptor antagonist, the effect of progesterone alone and in combination with the drug on Cx expression and cell proliferation was then tested. Progesterone showed the same effect as betamethasone on Cx expression, but it did not affect proliferation. Based on these results, neither the abortion effects of RU-486 nor the protective action of betamethasone and progesterone are exerted by modulation of Cx. RU-486 did not antagonise the progesterone effect, suggesting that its abortive action does not involve alteration of trophoblast Cx expression.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3