Abstract
Context
Methane from ruminant livestock systems contributes to the greenhouse effect on the environment, which justifies the adoption of novel feed strategies that mitigate enteric emissions.
Aims
We investigated the effects of the condensed tannin (CT)-rich legumes Flemingia macrophylla, Leucaena leucocephala, Stylosanthes guianensis, Gliricidia sepium, Cratylia argentea, Cajanus cajan, Desmodium ovalifolium, Macrotyloma axillare, Desmodium paniculatum and Lespedeza procumbens on in vitro methane emissions and rumen microbiota for beef cattle.
Methods
Four rumen-cannulated Nellore cattle grazing a tropical grass pasture were used as inoculum donors.
Key results
Real-time quantitative polymerase chain reaction analysis revealed that the abundance of Ruminococcus flavefaciens, methanogenic archaea and protozoa populations were reduced (P £ 0.05), whereas total ruminal bacteria were enhanced in the presence of CT. Our study also revealed a positive (P £ 0.05) relationship between CT and Fibrobacter succinogenes abundance. Reactive CT from L. leucocephala, D. paniculatum and L. procumbens resulted in decreased (P £ 0.05) isoacid content and methane production.
Conclusions
L. leucocephala, D. paniculatum and L. procumbens have the potential to suppress rumen methanogenesis. However, in vitro fermentation of L. leucocephala resulted in greater (P £ 0.05) degradability percentages than the other two species.
Implications
CT in legume species will have potential as part of an overall nutritional strategy to manipulate rumen microbiota and mitigate enteric methanogenesis in livestock production systems.
Subject
Animal Science and Zoology,Food Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献