An expert system to predict intricate saline - sodic subsoil patterns in upland South Australia

Author:

Thomas M.,Fitzpatrick R. W.,Heinson G. S.

Abstract

Digital soil mapping (DSM) offers apparent benefits over more labour-intensive and costly traditional soil survey. Large cartographic scale (e.g. 1 : 10 000 scale) soil maps are rare in Australia, especially in agricultural areas where they are needed to support detailed land evaluation and targeted land management decisions. We describe a DSM expert system using environmental correlation that applies a priori knowledge from a key area (128 ha) soil–landscape with a regionally repeating toposequence to predict the distribution of saline–sodic subsoil patterns in the surrounding upland farming region (2275 ha) in South Australia. Our predictive framework comprises interrelated and iterative steps, including: (i) consolidating a priori knowledge of the key area soil–landscape; (ii) refining existing mentally held and graphic soil–landscape models; (iii) selecting suitable environmental covariates compatible with geographic information systems (GIS) by interrogation via 3D visualisation using a GIS; (iv) transforming the existing soil–landscape models to a computer model; (v) applying the computer model to the environmental variables using the expert system; (vi) performing the predictive mapping; and (vii) validation. The environmental covariates selected include: digital terrain attributes of slope gradient, topographic wetness index and plan curvature, and airborne gamma-radiometric K%. We apply selected soil profile physiochemical data from a prior soil survey to validate mapping. Results showed that we correctly predicted the saline–sodic subsoils in 10 of 11 reference profiles in the region.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3