Modelling Chinese grassland systems to improve herder livelihoods and grassland sustainability

Author:

Behrendt Karl,Takahashi Taro,Kemp David R.,Han Guodong,Li Zhiguo,Wang Zhongwu,Badgery Warwick,Liu Haibo

Abstract

Recent degradation of Chinese grasslands has contributed to declining herder productivity and profitability, increased incidence of dust storms and regionally reduced air quality. Overgrazing due to a doubling of stocking rates since the mid-1980s has been identified as a key contributing factor. Several pathways and strategies exist to improve grassland management; however, there remains uncertainty around the long-term sustainability of alternative systems. Nineteen years of grasslands research in China has produced a suite of models designed to improve understanding of grassland systems and investigate options for change. The StageTHREE Sustainable Grasslands Model was used to evaluate the ability of selected strategies to meet economic, production and environmental objectives. Sets of strategies that focussed on flock size, lambing and selling times, supplementary feeding rules and grazing management were simulated for a typical herder located in the desert steppe of Siziwang Banner, in the Inner Mongolia Autonomous Region of China. The results from the risk efficiency analysis indicated that no single strategy set clearly dominates across all objectives. Although the current practice of herders was found to be risk-efficient, it did not achieve the highest rate of grassland recovery, minimise soil erosion or minimise the greenhouse gas (GHG) emission intensity for sheepmeat production. Targeting further improvements in these attributes could be at the detriment of herder livelihoods. The analysis indicated that if herders adopted biomass-based grazing management and improved supplementary feeding they would be able to improve grassland resilience and maintain positive long-term economic performance under reduced flock sizes. Individual decision-making units, however, would still need to trade off the importance of different attributes to identify the strategy set, or system, that best meets their objectives and attitude to risk.

Publisher

CSIRO Publishing

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3