Vegetative desiccation tolerance of Tripogon spicatus (Poaceae) from the tropical semiarid region of northeastern Brazil

Author:

Aidar Saulo de T.,Chaves Agnaldo R. de M.,Fernandes Júnior Paulo I.,Oliveira Melquisedec de S.,Costa Neto Benjamim P. da,Calsa Junior Tercílio,Morgante Carolina V.

Abstract

The vegetative desiccation tolerance of Tripogon spicatus (Nees) Ekman was confirmed by its ability to recover the physiological functionality of intact plants previously subjected to extreme dehydration. Photosynthesis became undetectable when leaf relative water content (RWCleaf) achieved ~60%, whereas photochemical variables showed a partial decrease. Until the minimum RWCleaf of 6.41%, total chl decreased by 9%, and total carotenoids increased by 29%. Superoxide dismutase (SOD) activity decreased by 57%, on average, during dehydration, but catalase (CAT) and peroxidase (APX) activities showed no significant differences throughout the experiment. Malondialdehyde (MDA) content increased by 151%, total leaf and root amino acids decreased by 62% and 77%, respectively, whereas leaf and root proline decreased by 40% and 61%, respectively, until complete desiccation. After rehydration, leaves completely recovered turgidity and total chl contents. Carotenoids and MDA remained high, whereas SOD was 60% lower than the measured average measured before dehydration. With the exception of root amino acid contents, total amino acids and proline concentrations recovered completely. Gas exchange and photochemical variables remained substantially higher 4 days after rehydration, compared with the control. Besides increasing MDA, the overall physiological results showed that membrane functionality was preserved, leading to the vegetative desiccation tolerance of T. spicatus during the dehydration–rehydration cycle.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3