Water-quality issues facing dairy farming: potential natural and built attenuation of nitrate losses in sensitive agricultural catchments

Author:

Singh RanvirORCID,Horne David J.

Abstract

Context Dairy farming will be increasingly scrutinised for its environmental impacts, in particular for its impacts on freshwater quality in New Zealand and elsewhere. Management and mitigation of high nitrate losses is one of the greatest water-quality challenges facing dairy farming in New Zealand and other countries. Management of critical flow pathways and nitrate-attenuation capacity could offer potential solutions to this problem and help maintain dairy-farming productivity, while reducing its water-quality impacts. Aims The present paper reviewed the key water-quality issues faced by dairy farming and assessed potential of emerging edge-of-paddock technologies, and catchment-scale nutrient-attenuation practices, to reduce nitrate losses from dairy farming to receiving water bodies. Methods We developed a conceptual catchment-scale modelling analysis assessing potential natural and built attenuation of nitrate losses from dairy farming in the Tararua and Rangitikei catchments (located in the lower part of the North Island, New Zealand). Key results This exploratory analysis suggests that a reduction of greater than 25% in the river nitrate loads from dairy-farming areas could potentially be achieved by spatially aligning dairy land with areas of high subsurface nitrate-attenuation capacity, and by managing critical flow pathways using innovative edge-of-field technologies such as controlled drainage, drainage-water harvesting for supplemental irrigation, woodchip bioreactors, and constructed wetlands in the study catchments. Conclusions The research findings highlighted the potential to better understand, map and effectively utilise existing natural and new built-in nitrate-attenuation capacity to significantly reduce water-quality impacts from dairy farming across environmentally sensitive agricultural catchments. This knowledge and tools could help farmers close the gap between what can be achieved with current, in-field mitigation practises and the nitrogen-loss allocation imposed by regulatory authorities. Implications However, the research findings presented here are based on a coarse-scale, conceptual modelling analysis, and therefore further research is recommended to develop tools and practices to better understand, map and effectively utilise existing natural and new built-in nitrogen attenuation capacity at farm-scale to achieve productive and environmentally friendly pastoral dairy farming across agricultural landscapes.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3