Abstract
The stock of organic carbon contained within a soil represents the balance between inputs and losses. Inputs are defined by the ability of vegetation to capture and retain carbon dioxide, effects that management practices have on the proportion of captured carbon that is added to soil and the application organic amendments. The proportion of organic amendment carbon retained is defined by its rate of mineralisation. In this study, the rate of carbon mineralisation from 85 different potential soil organic amendments (composts, manures, plant residues and biosolids) was quantified under controlled environmental conditions over a 547 day incubation period. The composition of each organic amendment was quantified using nuclear magnetic resonance and mid- and near-infrared spectroscopies. Cumulative mineralisation of organic carbon from the amendments was fitted to a two-pool exponential model. Multivariate chemometric algorithms were derived to allow the size of the fast and slow cycling pools of carbon to be predicted from the acquired spectroscopic data. However, the fast and slow decomposition rate constants could not be predicted suggesting that prediction of the residence time of organic amendment carbon in soil would likely require additional information related to soil type, environmental conditions, and management practices in use at the site of application.
Subject
Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献