Author:
Krisher Rebecca L.,Heuberger Adam L.,Paczkowski Melissa,Stevens John,Pospisil Courtney,Prather Randall S.,Sturmey Roger G.,Herrick Jason R.,Schoolcraft William B.
Abstract
The advent of metabolomics technology and its application to small samples has allowed us to non-invasively monitor the metabolic activity of embryos in a complex culture environment. The aim of this study was to apply metabolomics technology to the analysis of individual embryos from several species during in vitro development to gain an insight into the metabolomics pathways used by embryos and their relationship with embryo quality. Alanine is produced by both in vivo- and in vitro-derived human, murine, bovine and porcine embryos. Glutamine is also produced by the embryos of these four species, but only those produced in vitro. Across species, blastocysts significantly consumed amino acids from the culture medium, whereas glucose was not significantly taken up. There are significant differences in the metabolic profile of in vivo- compared with in vitro-produced embryos at the blastocyst stage. For example, in vitro-produced murine embryos consume arginine, asparagine, glutamate and proline, whereas in vivo-produced embryos do not. Human embryos produce more alanine, glutamate and glutamine, and consume less pyruvate, at the blastocyst compared with cleavage stages. Glucose was consumed by human blastocysts, but not at a high enough level to reach significance. Consumption of tyrosine by cleavage stage human embryos is indicative of blastocyst development, although tyrosine consumption is not predictive of blastocyst quality. Similarly, although in vivo-produced murine blastocysts consumed less aspartate, lactate, taurine and tyrosine than those produced in vitro, consumption of these four amino acids by in vitro-derived embryos with high octamer-binding transcription factor 4 (Oct4) expression, indicative of high quality, did not differ from those with low Oct4 expression. Further application of metabolomic technologies to studies of the consumption and/or production of metabolites from individual embryos in a complete culture medium could transform our understanding of embryo physiology and improve our ability to produce developmentally competent embryos in vitro.
Subject
Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献