The strength of remolded soils as affected by exchangeable cations and dispersible clay

Author:

Barzegar AR,Murray RS,Churchman GJ,Rengasamy P

Abstract

The tensile strengths of remoulded samples of five Australian soils with differing clay type, texture and shrink-swell potential were measured as a function of exchangeable cations (Na, Ca and Mg) and exchangeable sodium percentage (ESP). Spontaneously and mechanically dispersible clays were also determined as a function of ESP. The tensile strength changed with the nature of the exchangeable cation, clay content and amounts of spontaneously and mechanically dispersible clay. In Ca-soils, the tensile strength was highly correlated with clay content and CEC. Regression analyses of data for soils containing various amounts of exchangeable sodium showed that mechanically and spontaneously dispersible clay were individually correlated with the tensile strength of remoulded soils. However, multiple regression analyses of these data indicated that spontaneously dispersible clay alone was a major predictor of the tensile strength of remoulded sodic soils. This suggests that measurement of spontaneously dispersible clay adequately accounts for the differences in tensile strengths of dry remoulded soils as influenced by ESP values. Analysis of variance of data for all the soils with varying ESP values showed that spontaneously dispersible clay was strongly correlated with clay content. Analyses of data for individual soil type showed that spontaneously dispersible clay was highly correlated with ESP. For each soil studied, increase in ESP resulted in increase of dispersible clay and hence in tensile strength. Although tensile strength increased with ESP, the rate of change of strength with ESP was different for each soil. Soil with the highest clay content gave rise to the greatest rate of change. The effect of exchangeable magnesium on tensile strength was similar to calcium. However, in two of the soils, exchangeable magnesium, in the presence of sodium, increased the strength slightly more than calcium, confirming the ionic radius effect of these elements.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3