Weather systems and extreme rainfall generation in the 2019 north Queensland floods compared with historical north Queensland record floods

Author:

Callaghan JeffORCID

Abstract

Earlier papers have addressed floods from warm-air advection (WAA) in southeast Australia and around the globe, and extreme rainfall in US hurricanes and Australian tropical cyclones (TCs). This is the first paper to address the WAA phenomena in causing monsoon and TC floods and in TC-like systems which develop over the interior of northern Australia. The inland events help explain Australia’s worst tropical flooding disaster in 1916. A disastrous series of floods during late January and early February 2019 caused widespread damage in tropical north Queensland both in inland regions and along the coast. This occurred when some large-scale climate influences, including the sea surface temperatures suggested conditions would not lead to major flooding. Therefore, it is important to focus on the weather systems to understand the processes that resulted in the extreme rainfall responsible for the flooding. The structure of weather systems in most areas involved a pattern in which the winds turned in an anticyclonic sense as they ascended from the low to middle levels of the atmosphere (often referred to as WAA) which was maintained over large areas for 11 days. HYSPLIT air parcel trajectory observations were employed to confirm these ascent analyses. Examination of a period during which the heaviest rain was reported and compared with climatology showed a much stronger monsoon circulation, widespread WAA through tropical Queensland where normally its descending equivalent of cold-air advection is found, and higher mean sea level pressures along the south Queensland coast. The monsoon low was located between strong deep monsoon westerlies to the north and strong deep easterlies to the south which ensured its slow movement. This non-TC event produced heavy inland rainfall. Extreme inland rainfall is rare in this region. Dare et al. (2012), using data from 1969/70 to 2009/10, showed that over north Queensland non-TC events produced a large percentage of the total rainfall. The vertical structure associated with one of the earlier events that occurred in 2008 had sufficient data to detect strong and widespread WAA overlying an onshore moist tropical airstream. This appears to have played a crucial role in such extreme rainfall extending well inland and perhaps gives insight to the cause of a 1916 flooding disaster at Clermont which claimed around 70 lives. Several other events over the inland Tropics with strong WAA also help explain the 1916 disaster.

Publisher

CSIRO Publishing

Subject

Atmospheric Science,Global and Planetary Change,Oceanography

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3