Algal bioaccumulation and toxicity of platinum are increased in the presence of humic acids

Author:

Hourtané OcéaneORCID,Rioux GenevièveORCID,Campbell Peter G. C.ORCID,Fortin ClaudeORCID

Abstract

Environmental context The growth in demand for platinum has led to an increase in the presence of this metal in the environment but little is known about its toxicity to aquatic organisms. The presence of organic matter should contribute to decreasing metal bioavailability but the opposite was found for platinum. How ubiquitous natural organic matter can alter the accumulation and effects of platinum group elements remains to be fully elucidated. Rationale There is a growing interest for platinum in ecotoxicology, mainly because of its use in automobile exhaust catalysts. When it reaches aquatic ecosystems, platinum can interact with ligands such as natural organic matter. According to the Biotic Ligand Model, the formation of such complexes should reduce metal bioavailability. As a consequence, toxicity should decrease in the presence of organic matter. Methodology This study focused on the uptake of platinum by two microalgae species (Chlorella fusca and Chlamydomonas reinhardtii) and its subsequent inhibitory effects on growth (96 h). Cells were exposed to platinum (5–300 µg L−1) at three concentrations (0, 10 and 20 mg C L−1) of standard Suwannee River humic acid (SRHA). Platinum bound to humic acid was determined experimentally using partial ultrafiltration to relate metal uptake and toxicity to speciation. Results Unexpectedly, results show that platinum toxicity, expressed as ultrafiltrable Pt (not bound to humic acid) and total Pt concentrations, is enhanced in the presence of humic acid for both algae. For C. fusca, the half maximal effective concentration (EC50) values decreased from 93 to 37 and 35 µg L−1 of ultrafiltrable Pt in the presence of 10 and 20 mg C L−1 SRHA and from 89 to 36 and 0.31 µg L−1 for C. reinhardtii. Discussion In contradiction with the Biotic Ligand Model, the results show that the presence of SRHA can significantly and importantly increase platinum uptake and toxicity as determined in two unicellular green algae, C. reinhardtii and C. fusca. The present work raises the issue of the impact of platinum on microalgae under realistic environmental conditions (ubiquitous presence of organic matter), primary producers being of great ecological importance.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3