Long term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland. II. Total organic carbon and its rate of loss from the soil profile

Author:

Dalal RC,Mayer RJ

Abstract

The kinetics of organic C loss were studied in six southern Queensland soils subjected to different periods (0-70 years) of cultivation and cereal cropping. The equation: Ct = Ce + (C0 - Ce)exp(- kt), where C0, Ce and C, are organic C contents initially, at equilibrium and at time k respectively, and k is the rate of loss of organic C from soil, was employed in the study. The parameter k was calculated both for %C (kc) and for weight of organic C/volume of soil (k,), determined by correcting for differences in sampling depth due to changes in bulk density upon cultivation. Mean annual rainfall largely determined both C, and Ce, presumably by influencing the amount of dry matter produced. Values of kc and kw varied greatly among the soils studied. For the 0-0.1 m depth, kw was 0.065, 0.080, 0.180, 0.259, 0.069 and 1.224 year-1 respectively for Waco (black earth - initially grassland), Langland-Logie (grey brown and red clays - brigalow), Cecilvale (grey, brown and red clays - poplar box), Billa Billa (grey, brown and red clays - belah), Thallon (grey, brown and red clays - coolibah) and Riverview (red earths - silver-leaved ironbark). The k values were significantly correlated with organic Chrease activity ratio (r = 0.99***) and reciprocal of clay content (r = 0.97**) of the virgin soils. In stepwise multiple regression analysis, aggregation index (for kc values) or exchangeable sodium percentage (for kw) and organic C/urease activity ratio of soils were significantly associated with the overall rate of loss of organic C. It was inferred, therefore, that the relative inaccessibility and protection of organic matter against microbial and enzymic attack resulted in reduced organic C loss. Losses of organic C from the deeper layers (0-0.2 m, 0-0.3 m) were observed in Waco, Langlands-Logie, Cecilvale and Riverview soils, although generally rate of loss decreased with depth.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3