The Structure and Operation of the Obliquely Striated Supercontractile Somatic Muscles in Nematodes.

Author:

Inglis WG

Abstract

The structure of nematode somatic muscles is reviewed. They are obliquely striated and, therefore, supercontractile because they change in length to an exceptional extent by both myofilament interdigitation and shearing. A model is developed which shows that shearing is generated by interdigitation under specified structural conditions. It is concluded that the ability to supercontract is functionally associated with a hydrostatic skeleton, because obliquely striated muscles occur in a wide range of unrelated Phyla and a functionally identical muscle has evolved from cross-striated muscle in other animals with a hydrostatic skeleton, particularly certain insect larvae. Two, possibly 3, morphologically distinct groups of muscles exist in the Nematoda which correspond to the Classes Enoplea, Rhabditea and Chromadorea. Parallel sequences of change occur in the first 2, in which the contractile layer increases in area, the sarcomeres become smaller, and the Z-system more regular. Descriptive terms are redefined, thus: platymyarian, quasi-platymyarian, shallow coelomyarian, and coelomyarian occur in Rhabditea; cubomyarian, regular cubomyarian, and stratimyarian occur in Enoplea; and a characteristic chromadorid-circomyarian is known from 2 Chromadorea. The structure of the muscles corresponds well to the higher nematode classification, except in the Order Spirurida which may have arisen from the Enoplea and not the Rhabditea as generally accepted.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CONVERGENT EVOLUTION IN INVERTEBRATES;Biological Reviews;2007-01-11

2. Comparative studies and evolution of muscles in chaetognaths;Marine Biology;2002-11

3. Dimensional and numerical growth of helical fibers in leeches: An unusual pattern;The Journal of Experimental Zoology;1998-06-15

4. Musculature;The Structure of Nematodes;1991

5. Morphogenesis of body wall muscle fibers in Enchytraeus minutus;Hydrobiologia;1989-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3