ShinySperm: navigating the sperm proteome landscape

Author:

Skerrett-Byrne David A.ORCID,Teperino RaffaeleORCID,Nixon BrettORCID

Abstract

Context Integrated omics studies hold a crucial role in improving our understanding of reproductive biology. However, the complex datasets so generated are often only accessible via supplementary data files, which lack the capacity for interactive features to allow users to readily interrogate and visualise data of interest. Aims The intent of this technical note was to develop an interactive web-based application that enables detailed interrogation of a representative sperm proteome, facilitating a deeper understanding of the proteins identified, their relative abundance, classifications, functions, and associated phenotypes. Methods We developed a Shiny web application, ShinySperm (https://reproproteomics.shinyapps.io/ShinySperm/), utilising R and several complementary libraries for data manipulation (dplyr), interactive tables (DT), and visualisation (ggplot2, plotly). ShinySperm features a responsive user interface, dynamic filtering options, interactive charts, and data export capabilities. Key results ShinySperm allows users to interactively search, filter, and visualise sperm proteomics data based on key features (e.g. protein classification, sperm cell domain, presence, or absence at different maturation stages). This application responds live to filtering options and enables the generation of interactive plots and tables, thus enhancing user engagement and understanding of the data. Conclusions ShinySperm provides a robust platform for the dynamic exploration of epididymal sperm proteome data. It significantly improves accessibility and interpretability of complex datasets, allowing for effective data-driven insights. Implications This technical note highlights the potential of interactive web applications in reproductive biology and provides a plug and play script for the field to produce applications for meaningful researcher interaction with complex omic datasets.

Funder

National Health and Medical Research Council

Publisher

CSIRO Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3