Author:
Town Raewyn M.,Chakraborty Parthasarathi,van Leeuwen Herman P.
Abstract
Environmental context. The environmental fate and bioavailability of metal ions in natural waters is determined by their thermodynamic stability and kinetic features, both of which are distributed and depend on the metal ion loading of the system. Diffusive gradients in thin film (DGT) is a dynamic technique for metal speciation analysis that measures a certain portion of these complexes as determined by its operational timescale. Reliable interpretation of data furnished by DGT necessitates characterisation of its features for the particular case of heterogeneous complexes.
Abstract. Owing to their inherent heterogeneity, the thermodynamic stability of metal ion complexes with natural ligands is characterised by a distribution, and thus is a function of metal-to-ligand ratio. The kinetic features of such metal complexes are also distributed and can be probed by dynamic speciation techniques. The kinetic regime of the metal complex sample can be manipulated via the metal-to-ligand ratio, and the timescale over which kinetic parameters are actually in effect is defined by the window of the chosen technique. Here we detail the kinetic features of diffusive gradients in thin film (DGT), and show that the range of attainable measurement timescales (τ) is rather limited: variation of the gel layer thickness practically allows only one order of magnitude in τ to be scanned. The more effective use of DGT to probe the distribution of dynamic metal species in heterogeneous systems is via variation of the metal-to-ligand ratio in the sample solution. Compilation of the literature DGT data for natural waters shows that by assuming a Freundlich isotherm relationship, the degree of heterogeneity is reflected in the measured DGT concentration as a function of metal ion loading.
Subject
Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献