Field studies on the biofumigation of take-all by Brassica break crops

Author:

Kirkegaard J. A.,Sarwar M.,Wong P. T. W.,Mead A.,Howe G.,Newell M.

Abstract

Biofumigation refers to the suppression of soil-borne pathogens and pests by biocidal compounds released by Brassica crops when glucosinolates (GSL) in their residues decay in soil. We conducted field studies at 2 sites to investigate the hypothesis that biofumigation by Brassica break crops would reduce inoculum of the take-all fungus Gaeumannomyces graminis var. tritici (Ggt) to lower levels than non-Brassica break crops, and thereby reduce Ggt infection and associated yield loss in subsequent wheat crops. High and uniform levels of Ggt were established at the sites in the first year of the experiments by sowing wheat with sterilised ryegrass seed infested with Ggt. Ggt inoculum declined more rapidly under Brassica crops than under linola and this reduction coincided with the period of root decay and reduced root glucosinolate concentrations around crop maturity. There was no consistent difference in inoculum reduction between canola (Brassica napus) and Indian mustard (Brassica juncea), nor between cultivars with high and low root GSL within each species. Despite significant inoculum reduction attributable to biofumigation, there were no differences in the expression of disease and associated impacts on the yield of subsequent wheat crops across the sites. Seasonal conditions, in particular the distribution of rainfall in both the summer–autumn fallow following the break crops and during the subsequent wheat crop, influenced inoculum survival and subsequent disease development. In wet summers, inoculum declined to low levels following all break crops and no extra benefit from biofumigation was evident. In dry summers the lower inoculum levels following brassicas persisted until the following wheat crops were sown but subsequent development of the disease was influenced more by seasonal conditions than by initial inoculum levels. Significant extra benefits of biofumigation were observed in one experiment where wheat was sown within the break crops to simulate grass weed hosts of Ggt. Under these circumstances there was greater reduction in Ggt inoculum under canola than linseed and an associated decrease in disease development. For host-dependent pathogens such as Ggt, we hypothesise that the benefits of biofumigation to subsequent wheat crops will therefore be restricted to specific circumstances in which inoculum is preserved during and after the break crops (i.e. dry conditions, grass hosts present) and where conditions in the following wheat crop lead to significant disease development (early sowing, wet autumn and spring, dry periods during grain filling).

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3