Size Effects in ZnO: The Cluster to Quantum Dot Transition

Author:

Wood Annabel,Giersig Michael,Hilgendorff Michael,Vilas-Campos Antonio,Liz-Marzán Luis M.,Mulvaney Paul

Abstract

The use of tetraalkylammonium hydroxides to prepare ZnO colloids with diameters ranging from 1 to 6 nm is described. The position of the first excitonic transition has been measured by UV-vis spectrometry and correlated with the particle size, which has been measured using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and ultracentrifugation (UC). The exciton transition is first visible at 265–270 nm corresponding to particle diameters around 1 nm; the exciton absorption band then becomes sharper and narrower, while the band red-shifts only slowly. Based on the sizing data from HRTEM, XRD, and UC, it is concluded that the quantum size effect at sizes less than the Bohr radius is significantly less than predicted from the Kayanuma equation. Based on the blue-shift in the trap emission as a function of nanocrystal size, the effective masses of the electron and hole (me, mh) remain constant in particles down to 1 nm in diameter, with a relative value given by me/(me+mh)=0.55 ± 0.04.

Publisher

CSIRO Publishing

Subject

General Chemistry

Cited by 201 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3