Galaxy Metabolism

Author:

Hopkins Andrew

Abstract

‘Galaxy Metabolism' was the second in the annual ‘Southern Cross Astrophysics Conference Series’ (http://www.aao.gov.au/AAO/southerncross/), supported by the Anglo-Australian Observatory and the Australia Telescope National Facility. It was held at the Australian National Maritime Museum in Darling Harbour, Sydney, from 22 to 26 June 2009, and was attended by 91 delegates from around the world.Over the past decade, both the star formation history and stellar mass density in galaxies spanning most of cosmic history have been well constrained. This provides the backdrop and framework within which many detailed investigations of galaxy growth are now placed. The mass-dependent and environment-dependent evolution of galaxies over cosmic history is now the focus of several surveys. Many studies are also exploring the role of gas infall and outflow in driving galaxy evolution, and the connection of these processes to massive star formation within galaxies.The aims of ‘Galaxy Metabolism’ were to bring together the global constraints on galaxy evolution, at both low and high redshift, with detailed studies of well-resolved systems, to define a clear picture of our understanding of galaxy metabolism: How do the processes of ingestion (infall), digestion (ISM physics, star formation) and excretion (outflow) govern the global properties of galaxies; how do these change over a galaxy's lifetime; and are the constraints from nearby well resolved studies consistent with those from large population surveys at low and high redshift?The conference was a great success, with an extensive variety of topics covered spanning many aspects of galaxy evolution, and brought together eloquently in a comprehensive conference summary by Warrick Couch. The four papers by De Lucia (2010), Cole (2010), Vlajić (2010) and Stocke et al. (2010) presented in this special collection of PASA are just a sampling of the depth and variety of the resentations given during the conference.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3