Author:
Ahmed Muhammad Zaheer,Shimazaki Takayoshi,Gulzar Salman,Kikuchi Akira,Gul Bilquees,Khan M. Ajmal,Koyro Hans–W.,Huchzermeyer Bernhard,Watanabe Kazuo N.
Abstract
Plantlets of Aeluropus lagopoides (Linn.) Trin. Ex Thw. were grown at different NaCl concentrations (26, 167, 373 and 747 mM) for 3, 7 and 15 days; their growth, osmotic adjustment, gas exchange, ion compartmentalisation and expression of various genes related to Na+ flux was studied. Plantlets showed optimal growth in non-saline (control; 26 mM NaCl) solutions, whereas CO2/H2O gas exchange, leaf water concentration and water use efficiency decreased under all salinity treatments, accompanied by increased leaf senescence, root ash, sodium content and leaf osmolality. A decrease in malondialdehyde (MDA) content with time was correlated with Na+ accumulation in the leaf apoplast and a concomitant increase in Na+ secretion rate. A. lagopoides accumulated a higher concentration of Na+ in root than in leaf vacuoles, corresponding with higher expression of V-NHX and lower expression of PM-NHX in root than leaf tissue. It appears that V-ATPase plays a vital role during Na+ transport by producing an electromotive force, driving ion transport. Leaf calcium increased with increasing salinity, with more rapid accumulation at high salinity than at low salinity, indicating a possible involvement of Ca2+ in maintaining K+ : Na+ ratio. Our results suggest that A. lagopoides successfully compartmentalised Na+ at salinities up to 373 mM NaCl by upregulating the gene expression of membrane linked transport proteins (V-NHX and PM-NHX). At higher salinity (747 mM NaCl), a reduction in the expression of V-NHX and PM-NHX in leaves without any change in the rate of salt secretion, is a possible cause of the toxicity of NaCl.
Subject
Plant Science,Agronomy and Crop Science
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献