An Agar Gel Technique Demonstrates Diffusion Limitations to Cadmium Uptake by Higher Plants

Author:

Degryse Fien,Smolders Erik,Parker David R.

Abstract

Environmental Context. Toxic effects of trace metals are often related to the amount of metal that is internalized by the organism. Uptake of metals by biota is usually predicted with equilibrium models, which assume that transport of the metal from the solution to the biosurface does not limit uptake. In this study, uptake of cadmium by higher plants is shown to be limited by the transport of the free ions to the root surface under a range of conditions. Abstract. Uptake of cadmium (Cd) by spinach and wheat was higher in the presence of fast-dissociating complexes than in unbuffered solutions with the same free ion concentration. This contribution of metal complexes to metal uptake cannot be explained by equilibrium free-ion-based models, which assume that transport of the free ion to the biosurface is not limiting the uptake. To demonstrate diffusion limitations to metal uptake, we used an agar gel technique in which Cd and Zn concentrations around the roots, after 6 h of uptake, were compared with bulk concentrations. Metal depletion around the roots was clearly observed in agar where the ion activities were not buffered by complexes, whereas the depletion was less pronounced in buffered agar. Metal uptake by the plants in unbuffered media was greater as the degree of agitation increased (stirred solution > unstirred solution > agar), while no such dependence on hydrodynamic conditions was found in buffered media, which is in agreement with theoretical predictions.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3