Protective enzymes against reactive oxygen species during ripening of tomato (Lycopersicon esculentum) fruits in response to low amounts of UV-C

Author:

Barka Essaid Ait

Abstract

In previous studies with tomato (Lycopersicon esculentum L.) exposed to a low level (3.7 kJ m –2) of UV-C (λ: 254 nm) radiation, which is defined as a beneficial level, we report a delay in fruit ripening by at least 1 week for treated fruit. In the present study, we investigate the changes in the activities of different enzymes involved in defense mechanisms, such as guaiacol peroxidase, ascorbate peroxidase, catalase, superoxide dismutase, ascorbate oxidase, lipoxygenase and phenylalanine ammonia lyase in tomato fruit in response to a beneficial level of UV-C. The irradiation leads to an increase in the guaiacol peroxidase and ascorbate peroxidase activities, whereas catalase activity remains similar to the control. The activities of superoxide dismutase and ascorbate oxidase were significantly reduced after UV-C exposure. In UV-C-treated fruit, an increase of lipoxygenase and phenylalanine ammonia lyase activities occurred within the first 5 d, followed by a second period in which these activities were below those of the control. Our study suggests that the level of UV-C used induced a rapid but moderate accumulation of photooxidation products, to which plants react by stimulating their defence mechanisms against oxidation. This activation may explain the delay observed in ripening and senescence of irradiated tomato fruit.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3