Fluxes of nitrogen derived from plant residues and fertiliser on a cracking clay in a semi-arid environment.

Author:

Armstrong R. D.,McCosker K.,Millar G.,Probert M. E.

Abstract

The feasibility of using legume leys to redress declining levels of soil nitrogen (N) fertility on the heavy clay Vertisols of the northern Australian grain belt depends partly on the ability of plant residues to supply N directly to subsequent cereal crops. An alternative is the use of fertiliser N in continuous cereal cropping. Two experiments were conducted (one in the field, the other under polyhouse conditions) to compare the uptake of N from either plant residues or ammonium sulfate fertiliser that had been labelled with 15N. In a field trial, 15N-labelled shoots of grain sorghum and Desmanthus virgatus and ammonium sulfate were applied to micro-plots and the flux of the added N between different soil pools and a wheat crop was followed over 219 days. Only small amounts of residue-derived N (<5%) were recovered in the mineral N of the soil at a depth of 0-10 cm, whereas over 88% of the fertiliser N was present as mineral N soon after adding the fertiliser. Soil microbial biomass-N was increased following addition of residues. Recovery of added 15N in the wheat crop was much higher from the fertiliser (35%) than from the 2 residue sources (<5%). The pot trial compared a wider range of 15N-labelled residues (shoot and root residues of Desmanthus virgatus, Lablab purpureus, and sorghum) with several rates of ammonium sulfate, applied in the presence and absence of non-labelled grain sorghum residues, over 4 cropping cycles. Dry matter production and N uptake were increased by application of fertiliser N, although the response was reduced in the presence of non-labelled sorghum residues; responses to residue N were much smaller than those to fertiliser N. In the first crop following residue application <7% of residue N was recovered, increasing to 12-23% over the 4 crops. Recovery of fertiliser N by the crops increased with the rate of application, and also depended on whether it was applied together with residues. A feature of the results, in both the field and pot experiments, was the large proportion of applied 15N that could not be accounted for in either the soil or the crops, and these losses have been attributed to denitrification.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3