Development of gas signatures of smouldering peat wildfire from emission factors

Author:

Hu Yuqi,Rein GuillermoORCID

Abstract

Smouldering peat fires are responsible for regional haze episodes and cause environmental, social and health crises. Owing to the unique burning characteristics of smouldering peat, identifying and detecting this kind of fire remains a challenge. This work explores smouldering peat gas signatures using emission factor (EF) data from literature. Systematic comparisons and statistical analyses were carried out to investigate 28 forms of EF combinations created from the four most abundant gas species: carbon dioxide (CO2), methane (CH4), carbon monoxide (CO) and ammonia, from smouldering peat, flaming savanna and grassland, agricultural residue and forest fires. Among the candidate gas signatures, the ratio of EF(CO2) to EF(CH4) for smouldering peat showed a significant improvement with statistically different ranges of values (134.6) compared to those from flaming savanna and grassland fire (940.2), agricultural residue fire (434.4 ), forest fire (368.8) and mixed burning peat fires (207.7). Additionally, we found that EF(CO2)/EF(CH4) is independent from fuel composition and could differentiate early ignition from the subsequent spread, making it the best gas signature among those analysed, including CO/CO2 ratio and the Modified Combustion Efficiency. This work presents the first scientific endeavour developing smouldering gas signatures, contributing to the scientific understanding and remote sensing and early detection of smouldering peat wildfires.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

Reference41 articles.

1. Emission factors for open and domestic biomass burning for use in atmospheric models.;Atmospheric Chemistry and Physics,2011

2. Emission of trace gases and aerosols from biomass burning – an updated assessment.;Atmospheric Chemistry and Physics,2019

3. Emission of trace gases and aerosols from biomass burning.;Global Biogeochemical Cycles,2001

4. Feedback control of the rate of peat formation.;Proceedings of the Royal Society of London. Series B: Biological Sciences,2001

5. Characterization of gas and particle emissions from laboratory burns of peat.;Atmospheric Environment,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3