Pesticide extraction from soil into runoff under a rainfall simulator

Author:

Silburn D. MarkORCID

Abstract

Context Runoff estimation is an important aspect of pesticide environmental behaviour and is the major loss pathway to the environment. Aims To improve understanding of pesticide runoff. Methods Data from three rainfall simulator studies was used. Twelve pesticides were studied ranged from tightly sorbed (DDE, soil sorption coefficient (KD) ~15 000 L kg−1) to weakly sorbed (dimethoate, KD < 30). Key results Event runoff pesticide concentrations were closely related to soil concentrations (0–25 mm depth). The ratio of runoff to soil concentration (the runoff extraction ratio, ERO), was similar for pesticides with a wide range of sorption and across the three soils: runoff concentration (μg L−1) = 28 × soil concentration (mg kg−1). ERO decreased with time after spraying, presumably due to lower concentrations in the top few mm of soil. Conclusions This model provides improved or similar estimates of pesticide runoff than previous models. Similar ERO values between sites was probably due to similar hydrology (high rainfall intensity, surface sealing, moist subsoils) and erosion, and because the same masses of soil and water are involved in mixing. Reduction in runoff concentrations by leaching was not influential, because infiltration was small and soil sorption too high. Implications Conditions studied apply during summer storms on most cotton and grain land on clay soils in the northern grain and cotton lands in eastern Australia. The model should be applicable under these conditions.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Reference52 articles.

1. Ahuja LR (1986) Characterization and modeling of chemical transfer to runoff. In ‘Advances in soil science. Vol. 4’. (Eds BA Stewart) pp. 149–188. (Springer) doi:

2. Modeling soluble chemical transfer to runoff with rainfall impact as a diffusion process.;Soil Science Society of America Journal,1990

3. The extent and nature of rainfall-soil interaction in the release of soluble chemicals to runoff.;Journal of Environmental Quality,1983

4. Baker JL (1980) Agricultural areas as nonpoint sources of pollution. In ‘Environmental impact of nonpoint source pollution’. (Eds MR Overcash, JM Davidson) pp. 275–310. (Ann Arbor Science Publishers Inc: Ann Arbor, MI)

5. Soil and nutrient losses in runoff with selected cropping treatments on tropical soils.;Agronomy Journal,1972

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3