Abstract
Piggery effluent contains high concentrations of potassium, and its repeated irrigation raises soil exchangeable potassium to levels, relative to divalent cations, that may degrade soil structure. We surveyed 6 big piggeries extending from south-eastern Queensland on a self-mulching Vertosol, to an Arenic Rudosol in south-eastern South Australia. We sampled effluent used for irrigation and also soil profiles to permit 'fenceline' comparisons between soils that had and had not been irrigated. The major water-soluble cations sodium (Na+), potassium (K+), calcium (Ca2+), and magnesium (Mg2+) were measured in the effluent and the soil saturation extracts, and also their exchangeable forms on air-dried soil samples. Ammonium-nitrogen (NH4+-N) was also assayed. The effluents were similar, with pH values between 7.5 and 8 together with very high water-soluble NH4-N, lower values for K+ and Na+, and quite low concentrations of Ca2+ and Mg2+. Cation concentrations varied across effluents; sodium and potassium adsorption ratios (SAR and KAR) were relatively constant but smaller than an ammonium adsorption ratio (Am-AR), which we conceive to estimate the influence of NH4+-N relative to the divalent cations in the effluent. Exchangeable K+ ratios in all profiles that had been irrigated were greater than their non-irrigated partners, as were the KAR values in their saturation extracts. Despite high concentrations of NH4+-N and high values of Am-AR in the effluents, there was no evidence of exchangeable NH4+ in the soils when sampled, which, we presume, is rapidly taken up by plants or oxidised. We present data that support a useful relationship between total cation content and effluent and the soil saturation extract electrical conductivity (EC), We also observed a modest increase in the EC of the saturation extract of irrigated soils. Farm records were insufficient to permit material balance calculations.
Subject
Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献