An Evaluation of the Excitation-Class Parameter for the Central Stars of Planetary Nebulae

Author:

Reid Warren A.,Parker Quentin A.

Abstract

AbstractThe three main methods currently in use for estimating the excitation class of planetary nebulae (PNe) central stars are compared and evaluated using 586 newly discovered and previously known PNe in the Large Magellanic Cloud (LMC). In order to achieve this we ran a series of evaluation tests using line ratios derived from de-reddened, flux-calibrated spectra. Pronounced differences between the methods are exposed after comparing the distribution of objects to their derived excitation. Line ratio comparisons show that each method's input parameters have a strong effect on the estimated excitation of a central star. Diagrams were created by comparing excitation classes with Hβ line fluxes. The best methods are then compared to published temperatures using the Zanstra method and assessed for their ability to reflect central star effective temperatures and evolution. As a result we call for a clarification of the term ‘excitation class’ according to the different input parameters used. The first method, which we refer to as Exneb relies purely on the ratios of certain key emission lines. The second method, which we refer to as Ex* includes modeling to create a continuous variable and, for optically thick PNe in the Magellanic Clouds, is designed to relate more closely to intrinsic stellar parameters. The third method, we refer to as Ex[Oiii]/Hβ since the [Oiii]/Hβ ratio is used in isolation to other temperature diagnostics. Each of these methods is shown to have serious drawbacks when used as an indicator for central star temperature. Finally, we suggest a new method (Exρ) for estimating excitation class incorporating both the [Oiii]/Hβ and the HeII λ4686/Hβ ratios. Although any attempt to provide accurate central star temperatures using the excitation class derived from nebula lines will always be limited, we show that this new method provides a substantial improvement over previous methods with better agreement to temperatures derived through the Zanstra method.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spectral study of the planetary nebula NGC 2452;New Astronomy;2024-02

2. Exploring the high abundance discrepancy in the planetary nebula IC 4663;Frontiers in Astronomy and Space Sciences;2023-12-18

3. A catalogue of planetary nebulae chemical abundances in the Galactic bulge;Monthly Notices of the Royal Astronomical Society;2023-11-15

4. Comprehensive study of the Galactic Planetary Nebula NGC 2792;Astrophysics and Space Science;2023-07

5. MUSE crowded field 3D spectroscopy in NGC 300;Astronomy & Astrophysics;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3